3.224 \(\int \frac {1}{x \sqrt {a+b x^3+c x^6}} \, dx\)

Optimal. Leaf size=44 \[ -\frac {\tanh ^{-1}\left (\frac {2 a+b x^3}{2 \sqrt {a} \sqrt {a+b x^3+c x^6}}\right )}{3 \sqrt {a}} \]

[Out]

-1/3*arctanh(1/2*(b*x^3+2*a)/a^(1/2)/(c*x^6+b*x^3+a)^(1/2))/a^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 44, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {1357, 724, 206} \[ -\frac {\tanh ^{-1}\left (\frac {2 a+b x^3}{2 \sqrt {a} \sqrt {a+b x^3+c x^6}}\right )}{3 \sqrt {a}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*Sqrt[a + b*x^3 + c*x^6]),x]

[Out]

-ArcTanh[(2*a + b*x^3)/(2*Sqrt[a]*Sqrt[a + b*x^3 + c*x^6])]/(3*Sqrt[a])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 1357

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[
b^2 - 4*a*c, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x \sqrt {a+b x^3+c x^6}} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx,x,x^3\right )\\ &=-\left (\frac {2}{3} \operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x^3}{\sqrt {a+b x^3+c x^6}}\right )\right )\\ &=-\frac {\tanh ^{-1}\left (\frac {2 a+b x^3}{2 \sqrt {a} \sqrt {a+b x^3+c x^6}}\right )}{3 \sqrt {a}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 44, normalized size = 1.00 \[ -\frac {\tanh ^{-1}\left (\frac {2 a+b x^3}{2 \sqrt {a} \sqrt {a+b x^3+c x^6}}\right )}{3 \sqrt {a}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*Sqrt[a + b*x^3 + c*x^6]),x]

[Out]

-1/3*ArcTanh[(2*a + b*x^3)/(2*Sqrt[a]*Sqrt[a + b*x^3 + c*x^6])]/Sqrt[a]

________________________________________________________________________________________

fricas [A]  time = 0.90, size = 124, normalized size = 2.82 \[ \left [\frac {\log \left (-\frac {{\left (b^{2} + 4 \, a c\right )} x^{6} + 8 \, a b x^{3} - 4 \, \sqrt {c x^{6} + b x^{3} + a} {\left (b x^{3} + 2 \, a\right )} \sqrt {a} + 8 \, a^{2}}{x^{6}}\right )}{6 \, \sqrt {a}}, \frac {\sqrt {-a} \arctan \left (\frac {\sqrt {c x^{6} + b x^{3} + a} {\left (b x^{3} + 2 \, a\right )} \sqrt {-a}}{2 \, {\left (a c x^{6} + a b x^{3} + a^{2}\right )}}\right )}{3 \, a}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x^6+b*x^3+a)^(1/2),x, algorithm="fricas")

[Out]

[1/6*log(-((b^2 + 4*a*c)*x^6 + 8*a*b*x^3 - 4*sqrt(c*x^6 + b*x^3 + a)*(b*x^3 + 2*a)*sqrt(a) + 8*a^2)/x^6)/sqrt(
a), 1/3*sqrt(-a)*arctan(1/2*sqrt(c*x^6 + b*x^3 + a)*(b*x^3 + 2*a)*sqrt(-a)/(a*c*x^6 + a*b*x^3 + a^2))/a]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {c x^{6} + b x^{3} + a} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x^6+b*x^3+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^6 + b*x^3 + a)*x), x)

________________________________________________________________________________________

maple [F]  time = 0.02, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {c \,x^{6}+b \,x^{3}+a}\, x}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(c*x^6+b*x^3+a)^(1/2),x)

[Out]

int(1/x/(c*x^6+b*x^3+a)^(1/2),x)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x^6+b*x^3+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more details)Is 4*a*c-b^2 positive, negative or zero?

________________________________________________________________________________________

mupad [B]  time = 1.57, size = 36, normalized size = 0.82 \[ -\frac {\ln \left (\frac {b}{2}+\frac {a}{x^3}+\frac {\sqrt {a}\,\sqrt {c\,x^6+b\,x^3+a}}{x^3}\right )}{3\,\sqrt {a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(a + b*x^3 + c*x^6)^(1/2)),x)

[Out]

-log(b/2 + a/x^3 + (a^(1/2)*(a + b*x^3 + c*x^6)^(1/2))/x^3)/(3*a^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x \sqrt {a + b x^{3} + c x^{6}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(c*x**6+b*x**3+a)**(1/2),x)

[Out]

Integral(1/(x*sqrt(a + b*x**3 + c*x**6)), x)

________________________________________________________________________________________